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TAKE a simulation. A big simulation, in which you want to view 
a fairly high level of detail. Maybe you want to study inertial 

confinement fusion as part of the nationʼs Stockpile Stewardship 
Program or find out the effects of global climate change in a 
specific area or explore the mechanism by which stars collapse 
and then explode in supernovae. To model those events in three 
dimensions and at high resolution, youʼll need immense computer 
codes. And processing these codes will require the computational 
speeds and large memories of massively parallel supercomputers, 
such as those developed for the National Nuclear Security 
Administrationʼs (NNSA̓ s) Advanced Simulation and Computing 
(ASC) Program. 

Ideally, you would want the computing time to remain the same 
even though the size of the problem increased. But unfortunately, 
as simulations become more lifelike and detailed and more 
processors are added to handle the calculation, the run times to 
solve a calculation may become even longer.

At least, that was the situation until scientists developed 
software codes called scalable linear solvers. These codes, 

including those developed at Lawrence Livermore, help keep 
simulations running fast as they grow larger and more processors 
are added to attack the problem.

Flowing from Groundwater Research
According to computational mathematician Rob Falgout, 

Livermore researchers began to develop scalable linear solvers 
in the early 1990s as part of a project funded by the Laboratory 
Directed Research and Development (LDRD) Program. “Steven 
Ashby and I were working with a team to develop a code called 
ParFlow, which simulates the flow of groundwater through 
different kinds of materials underground,” says Falgout. “As a 
part of that LDRD project, we began developing solvers—special 
algorithms or processes for solving specific problems—to 
significantly speed up the solution of the mathematical equations 
generated by ParFlow.”

In that particular application, the sites being modeled were 
several square kilometers, and the calculations had to resolve 
differences in subsurface media of a few meters. As a result, the 
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computational grids had up to 100 million spatial zones. For 
ParFlow to handle such detailed simulations, the researchers had 
to design the code so it would effectively harness the power of 
massively parallel processing.

ParFlow did all that and more. It proved to be portable and 
scalable—that is, it can run on a variety of computing platforms, 
and it efficiently uses the processors that are added to handle 
larger problems. Itʼs also very fast, reducing the time for some 
simulations from 30 minutes to only 13 seconds. 

Part of ParFlowʼs success sprang from the multigrid approach 
it used, which solved problems 100 times faster than other solvers. 
Since that initial success, interest in multigrid linear solvers for 
parallel computers has grown not only at Livermore but throughout 
the scientific computing community. As a result, with support 
from the ASC Program and the Department of Energy Office of 
Scienceʼs Mathematical, Information, and Computational Sciences 
Program, the Scalable Linear Solvers project was formed at the 
Laboratoryʼs Center for Applied Scientific Computing. Led by 
Falgout, the project now employs 10 people and is considered 
a premier group in this esoteric area where mathematics and 
computational sciences mesh.

Solvers R Us
In general, a solver is an algorithm for calculating the solution 

to a set of mathematical equations. A linear solver calculates 
the solution to a linear system of equations—a set of equations 
just like those found in high school algebra, except that the set 
has millions or billions of equations to solve. The unknowns 

in these linear systems of equations can represent a variety of 
physical quantities, such as the pressure at a particular location 
underground or the new location of a piece from an automobile 
frame after a crash. In most simulation codes at Livermore, these 
unknowns are also associated with points on a grid. For example, 
in the groundwater-flow application, the grid points represent 
underground locations.

In many large-scale scientific simulation codes, a large fraction 
of the overall run time on the computer is spent in linear solvers. 
Cut the processing time for these solvers, and the total run time 
shrinks. Thus, says Falgout, much of the research and development 
in scalable algorithms is aimed at solving these large, linear 
systems faster and more efficiently on parallel computers. 

In the multigrid approach, code developers can reduce this time 
by making clever use of a sequence of smaller linear systems, 
each associated with a coarser grid—hence, the term multigrid. 
Computational mathematician Jim Jones, who also works on the 
project, says, “Probably the simplest way to think about it is to 
imagine a two-dimensional problem, where you have some initial 
guess of what your answer should be. The idea is to generate a new 
or better guess through some simple procedure or algorithm, then 
repeat the procedure until your guess converges with the solution 
of the linear system.”

Initially, each unknown in the guess is incorrect, and it may 
differ significantly from the correct value. When these errors are 
plotted, the plot has lots of peaks and valleys, as shown on p. 18. 
The goal is to generate a new guess that matches the correct value, 
or has zero error. Standard solver algorithms generate new guesses 
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A multigrid cycle. The grids show the errors in a single iteration of a calculation, with peaks 

indicating the greatest errors and relatively flat areas the smallest errors. The ultimate goal is to 

make the entire map as close to a flat plane as possible—that is, a grid with no errors. Using a 

multigrid approach reduces both short and long frequency errors.
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with a “smoother,” a special method that smooths the errors when 
they are plotted. With the multigrid approach, code developers take 
advantage of the smoother by recognizing that low-frequency (or 
long-length-scale) errors can be accurately and efficiently resolved 
on a coarser, or smaller, grid.

The Livermore researchers are creating scalable linear solvers 
based on this multigrid technology. The main ingredients of a 
multigrid solver are the smoother, the coarse-grid linear systems, 
and the procedures for transferring data back and forth between 
the algorithms. “If all the components are properly defined,” says 
Jones, “the method will uniformly damp error frequencies, and the 
computational cost will depend only linearly on the problem size. 
In other words, multigrid algorithms are scalable.”

The Laboratoryʼs multigrid solvers are based on two methods: 
geometric and algebraic. Geometric multigrid methods are used for 
linear systems defined on rectangular grids or meshes; algebraic 
multigrid methods are for linear systems defined on unstructured, 
or nonrectangular, grids. The geometric methods are used more 
often, but constructing the solver requires geometric information 
about the physical problem. Algebraic methods require no 
geometric information but are more difficult to design. 

The Livermore team implements its solver algorithms in a 
software library called hypre, which runs on simple laptops and 
workstations as well as on massively parallel computers such as 
ASCI White. The solver codes in hypre—including the algebraic 
multigrid code BoomerAMG and the geometric multigrid solvers 
SMG and PFMG—are maintained by the project team and are 
available to the scientific community worldwide.

Making the Impossible Possible
Scalable linear solvers are allowing scientists to both pose and 

answer new questions. For example, consider a simulation at a 
particular resolution that would take several days to run. Increasing 
the resolution to make the model more accurate and lifelike means 
that the simulation will take even longer to run. In the world of 
simulations, run time is money. Because the Livermore multigrid 
solvers reduce the run time, scientists can push their simulations to 
the next level of detail.

At Livermore, for example, researchers integrated a parallel 
algebraic multigrid code into the hydrodynamics code ALE3D to 
solve difficult elasticity problems for modeling the deformation of 
materials. Researchers in Germany have also used hypre solvers to 
predict results from operations to correct facial deformities—another 
use of elasticity equations, but this time for medical applications. 

“For those of us on this project,” says Falgout, “our work is 
mostly about mathematics. But itʼs important to remember that the 
equations weʼre trying to solve are not just abstract symbols and 
numbers. They describe real physical processes that researchers 

are trying to better understand—whether itʼs radiation flow in a 
supernova, the flow of groundwater through the subsurface, or the 
behavior of a plasma in a complex magnetic field. Today, computer 
simulations are increasingly important in scientific investigations, 
aiding or even taking the place of traditional experiments. So 
any method we can find to make detailed, three-dimensional 
problems run more quickly and efficiently opens new doors to our 
understanding of the world.”

—Ann Parker
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For further information contact Rob Falgout (925) 422-4377 
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The Department of Energy’s Scientific Discovery through Advanced 

Computing (SciDAC) Program is funding multigrid research and 

development for various application areas. For example, algebraic multigrid 

techniques are being applied to tokamak fusion applications in collaboration 

with the SciDAC Center for Extended MHD Modeling (CEMM). This 

example from a CEMM simulation is of a tokamak sawtooth instability 

showing pressure contours and surface with some magnetic-field lines.




